
Determination of changes in streamflow variance by means of a

wavelet-based test

Anthony T. Cahill
Department of Civil Engineering, Texas A&M University, College Station, Texas, USA

Received 8 January 2001; revised 19 December 2001; accepted 19 December 2001; published 1 June 2002.

[1] Changes in the variance of streamflow over time may possibly be caused by land cover
changes or climate changes. Knowledge of these possible changes in the time series structure is
desirable for validation of modeling efforts; detection is not always straightforward, however.
We present the use of a wavelet-based statistical test for the detection of changes in the variance of
a time series applied to records of streamflow from 12 rivers in the United States from the period
1954–1999. The test is able to show during which time periods and at what wavelet scales
changes in the variance are taking place. It is found that the major similarities in variance change
for all the streamflow time series exist when the largest time domain wavelet is used and also
when a wavelet of the second largest frequency scale is used. Sampling considerations prevent
exact localization of the time and frequency of the change(s). Results of the test indicate that for
the data analyzed in this study a change in the variance of the streamflow time series most likely
did take place over the time period examined. INDEX TERMS: 1833 Hydrology:
Hydroclimatology; 1860 Hydrology: Runoff and streamflow; 1869 Hydrology: Stochastic
processes; KEYWORDS: wavelets, streamflow, climate change

1. Introduction

[2] Estimation and description of daily streamflow remain one
of the problems of interest in surface water hydrology. New
approaches to this problem continue to be developed [e.g., Liu
et al., 1998]. This interest is driven by not only the widespread use
of riparian water for human water supply but also the integrating
effect of the hydrologic state of a watershed evinced by stream-
flow. The amount and timing of streamflow are related to the
amount of rainfall, soil moisture, and land cover of the watershed
and hence may yield information on changes in land cover or
climate. Recent analysis of twentieth century time series of
precipitation and evaporation have indicated that the hydrologic
cycle may be becoming more intense, with more precipitation,
evaporation, and runoff [Karl et al., 1996; Brutsaert and Parlange,
1998; Kiely et al., 1998]. The forward problem, changes in land
cover and/or climate regime leading to changes in the magnitude
and timing of river flow, has been explored through basin-scale
simulations, with an aim of evaluating the potential effects of
global climate change on a regional hydrologic cycle [Hamlet and
Lettenmaier, 1999; Matheussen et al., 2000].
[3] In order to validate these and future forward models that

estimate the hydrologic effect of land cover and climatic change it
may prove useful to investigate the statistical characteristics of
actual streamflow time series and evaluate their changes in time.
Although we would like forward models to reproduce accurately
the entire probability distribution of streamflows under a set of land
surface and climatic conditions, in practice, validation involves
matching the first two statistical moments, and so we restrict our
discussion to them. The possibility of changes in mean streamflow
has been evaluated using traditional trend and change point
analysis by Changnon and Demissie [1996]. The treatment of
changes in the variance structure of a time series is somewhat more
difficult and has been the subject of a number of approaches in the
statistical literature. Proposed methods include cumulative sum of

squares [Inclán and Tiao, 1994], Bayesian inference [McCulloch
and Tsay, 1993], periodogram tests [Picard, 1985], local cosine
bases [Mallat et al., 1998], and time-correlation analysis [Li,
1998], among others. In this study, we propose to examine a
number of daily streamflow records for evidence of change in the
variance using a wavelet-based statistical test of the periodogram.
[4] It should be noted that a change in the variance of a

streamflow time series is not necessarily problematic for stream-
flow modeling efforts. The traditional Box and Jenkins autore-
gressive moving average (ARMA) approach, often used for
streamflow modeling, requires a stationary Gaussian time series
[Bras and Rodriguez-Iturbe, 1993]. Since time series of streamflow
are, in general, nonstationary in the mean and also non-Gaussian
(streamflow is strictly positive, and extreme flows can lead to
heavy tailed distributions), generally, the streamflow time series is
first transformed using the Box-Cox approach [Box and Cox,
1964]:

zt ¼
ylt �1
l l 6¼ 0

log yt l ¼ 0;

8<: ð1Þ

where l is the transform parameter which turns the non-Gaussian
time series yt into a (nearly) Gaussian one, zt. Next, differencing is
used to remove nonstationarity in the mean. Long-memory effects
in hydrologic time series are addressed by use of fractional
differencing. Maximum likelihood methods exist to estimate all of
the needed parameters [Johnson and Wichern, 1998; Beran, 1995].
What is lost in these standard transformations is any information
about when the nonstationarity in the parameters occurs. For
example, since the maximum likelihood value of l is determined
by minimizing the sum over all the residuals, without regard to
their location in the time series, the resulting transformation
parameter can tell us nothing about if or when a change in the
variance structure occurred. Since our interest in this study is
whether a change in the variance in streamflow occurs and when
that change occurs, we will focus our analysis on the untrans-
formed time series of streamflow. Once the location of a change
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point is known, standard modeling techniques can be used for each
separate section of the time series.
[5] Wavelets have previously been used to analyze streamflow

time series by using plots of the wavelet coefficients as functions of
time and frequency (wavelet scalogram) [Smith et al., 1998].
Scalograms of streamflow calculated using the Mexican hat wave-
let were compared for 91 different rivers. It was found that the
scalograms of the streamflow time series exhibited characteristics
which would allow the rivers to be grouped into five different
categories, depending on what sort of input (snowmelt, brief
intense storms, etc.) drove streamflow. Wavelet analysis has also
been applied to a number of different environmental phenomena,
including rainfall fields [Kumar and Foufoula-Georgiou, 1993],
climate ‘‘wetness’’ index [Jiang et al., 1997], the Southern
Oscillation signal [Wang and Wang, 1996], sea level fluctuations
[Percival and Mofjeld, 1997], the relationship between the Mad-
den-Julian oscillation and the El Niño–Southern Oscillation
(ENSO) signal [Whitcher et al., 2000], and boundary layer turbu-
lence [Katul and Parlange, 1995].
[6] Because of their ability to decompose a signal with respect

to both time and frequency, there have been a number of different
investigations into the use of wavelets for the determination of the
second-order stationarity of a (possibly nonstationary) time series.
One possible method considers the wavelet variance itself and
examines its evolution through time. The wavelet variance used in

this approach is that defined by the maximum overlap discrete
wavelet transform (MODWT), which has also been called the
undecimated discrete wavelet transform (DWT) or the translation-
invariant DWT [Coifman and Donoho, 1995]. The MODWT
basically performs a DWT without the reduction of the wavelet
coefficients by a power of 2 at each step. As pointed out by
Percival [1995], the MODWT is superior to the standard discrete
wavelet transform with respect to estimation of the wavelet
variance. The wavelet variance at each decomposition level can
be computed as the sum of the wavelet coefficients at that level. In
order to test for stationarity of this variance it is useful to examine
the cumulative variance, for which nonparametric tests can be
developed [Percival and Walden, 2000]. This approach has been
used to examine the time series of annual low flows in the Nile
River for changes in the variance [Whitcher et al., 1998]. Another
approach to using wavelets to examine the variance of possibly
nonstationary time series extends the techniques of singular-spec-
trum analysis by using varying window widths at different corre-
lation orders to obtain data-adaptive wavelet transforms that
highlight nonstationary dominant structures [Yiou et al., 2000].
[7] An alternate approach to the detection of nonstationarity of

the variance using wavelets involves examination of the local
periodogram, which is simply the periodogram calculated for some
subsection of the entire time series [Neumann and von Sachs,
1997; von Sachs and Neumann, 2000]. Given the equivalence of

Table 1. List of USGS Gauging Stations Used in This Paper and Their Drainage Areas

Site Location
USGS Station

Number
Drainage Area,

km2

1 Connecticut River at Thompsonville, Connecticut 01184000 25,010
2 Schoharie Creek at Prattsville, New York 01350000 614
3 Esopus Creek at Coldbrook, New York 01362500 497
4 Rapidan River near Culpeper, Virginia 01667500 1,222
5 Sabine River near Ruliff, Texas 08030500 24,153
6 West Fork Trinity River at Grand Prairie, Texas 08049500 7,935
7 Colorado River at Columbus, Texas 08161000 107,806
8 San Marcos River at Luling, Texas 08172000 2,170
9 Pecos River near Girvin, Texas 08446500 76,531
10 Klamath River at Keno, Oregon 11509500 10,149
11 Nisqually River at La Grande, Washington 12086500 756
12 Willamette River at Albany, Oregon 14174000 12,531

Figure 1. Total annual flow for the 12 rivers used in this study. A logarithmic scale is used only so that the rivers
with low annual flow can be resolved; the trend fitting discussed in the text was done against untransformed data.
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the variance and spectrum with respect to Fourier transformation, it
can be seen heuristically that a change in the local variance will be
the same as a change in the local spectrum. A time-varying spectral
density of a time series can be defined as f (u, w), where u is a time
index and w is a frequency index. For the null hypothesis of a
stationary time series we have H0 : f (u, w) = f (w); the spectrum
depends only on the wave number. In this approach, wavelets are
used as test functions to develop a set of coefficients which depend
on the scale and translation of the wavelet and which, under the
null hypothesis, ought all to be zero. The statistical significance of
these coefficients can be tested against a critical value to determine
at what scale and translation of the wavelet the null hypothesis
ought to be rejected.
[8] In this paper, we examine the stationarity of the variance of

streamflow time series using the approach developed by von Sachs
and Neumann [2000]. Using this test, we examine the stationarity
characteristics of several streamflow record sets to determine if the
nonstationarity (if any) of the different streamflow time series have
any similarities, with regard to the time the variance changes, and
on what scale the change occurs. If climate change has increased
the volatility of the hydrologic cycle, we might expect to see
changes in the variance structure of streamflows in separate
locations occurring at the same time and on the same scale.
Uncertainty about the local effects of global climate change make
this hypothesis a weak one, however. It is entirely possible that

climate change could lead to greater variance in some streamflows,
lesser variance in some others, and no change at all in streamflow
in some geographic regions. Nevertheless, an understanding of
what sort of changes (if any) have occurred in streamflow may
yield insight into larger questions than streamflow simulation
modeling.
[9] We first outline without proofs the second-order stationarity

test developed by von Sachs and Neumann [2000]. The test is then
applied to a set of streamflow data taken from U.S. Geological
Survey (USGS) gauging stations distributed across the United
States. Results for the occurrence of nonstationarity in the variance
of the streamflow time series are presented and discussed.

2. Data

[10] The streamflow time series used in the analysis presented in
this paper were taken from USGS records of daily streamflow data.
Twelve stations which had record lengths of at least 214 days (�45
years) were chosen, with drainage basin areas ranging from 497 to
107,806 km2. The records for the 214 day period from 22
November 1954 to 30 September 1999 were used. A list of the
stations used is given in Table 1. These gauging stations were
chosen somewhat arbitrarily among the limited number of avail-
able stations with record lengths of at least 45 years, with two
guiding factors: (1) a range of drainage basin sizes and (2) the

a

Figure 2. Plots of the number of statistically significant values of ~aj;k; j0;k0 for all values of j
0, k0 (frequency indices) at

a given pair of j, k (time indices) for the (a) Pecos, (b) Rapidan, and (c) Willamette Rivers. Statistical significance
indicates that the periodogram (and hence the variance) is nonconstant for given set of ( j, k, j0, k0). The number of
statistically significant values has been placed in the nonzero cells since the gray scale is close to white when this
number is close to 0. The same gray scale is used for Figures 2a–2c.
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Figure 2. (continued)
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desire to have different areas of the United States represented by
more than one station. Total yearly flow was calculated for each
river for each of the years 1955–1998, and these values are shown
in Figure 1.
[11] In examining the streamflow time series a number of

features were observed which would have an effect on any
variance or periodogram-based analysis. If the streamflow is
>100 cubic feet per second (cfs, 1 cfs = 2.8317 � 10�2 m3/s),
three significant digits are used. This means that when the flow is
of the order of 102 cfs, the smallest reported difference between
flows is 1 cfs, while when the flows are of the order of 104 cfs, the
smallest difference between flows is 100 cfs. When the streamflow
is of the order of 10 or 1 cfs, two significant digits are used, so that
the smallest difference is 1 or 0.1 cfs. (Flows of the order of 1 cfs
were only found in the Pecos River time series.) The fact that the
data changes in discrete jumps limits the frequencies that the
periodogram can resolve; perhaps more importantly, the fact that
the changes in streamflow values are proportional to the amount of
streamflow may introduce a heteroskedacity purely from the way
the data are recorded. Of course, if the magnitude of the changes in
streamflow do in fact depend on the magnitude of the streamflow
(which we expect), the increase in step size as streamflow increases
only leads to loss of frequency resolution. As will be discussed in
Section 3, the analysis approach avoids too fine a frequency
resolution for additional reasons, so that this loss of frequency
resolution due to the discrete data steps should not be a significant
problem.

3. Wavelet-Based Test for Variance Change

[12] As mentioned above, proofs for the statistical test outlined
below are given by Neumann and von Sachs [1997] and von Sachs
and Neumann [2000]. Given a time series Xt, T (t = 1, . . ., T ), a time
index u 2 [0, 1] is defined using u = t/T. The local periodogram
(nontapered) has the form

IN u;wð Þ ¼ 1

2pN

XN
s¼1

X uT�N=2þsð Þ;T exp �iwsð Þ

�����
�����
2

; ð2Þ

where N is a parameter defining the length of the subset of Xt,T,
which is sampled for the local periodogram, the empirical estimate
of f (u,w). The time series X has spectral content over the range
[�p,p]. In the work of von Sachs and Neumann [2000] the Haar
wavelet in the time domain and a variation of the Littlewood-Paley
wavelet in the frequency domain are used to decompose the local
periodogram. These wavelets are defined as

y uð Þ ¼
1 if 0 � u � 1

2

�1 if 1
2<u � 1

(
ð3Þ

and

f wð Þ ¼ 1
�
p1=2 for 0 � w � p: ð4Þ

The usual dyadic scaling and translation relationships for wavelets
are also used:

yj;k uð Þ ¼ 2j=2y 2ju� k
� 	

ð5Þ

fj;k wð Þ ¼ 2j=2f 2jw� kp
� 	

ð6Þ

for k = 0, 1, . . ., 2 j � 1. The dilated and translated wavelets are
used to define coefficients

aj;k; j0 ;k0 ¼
Z 1

0

Z p

0

f u;wð Þyj;k uð Þfj0;k0 wð Þdudw ð7Þ

~aj;k; j0 ;k0 ¼
Z 1

0

Z p

0

I k2�jT; kþ1=2ð Þ2�jTh i wð Þ
�

þ I kþ1=2ð Þ2�jþ1½ �T; kþ1ð Þ2�jTh i wð Þ
�

� yj;k uð Þfj0;k0 wð Þdudw; ð8Þ

where IhK, Li is the periodogram derived using the data from the
interval [K, L]:

I K;Lh i wð Þ ¼ 1

2p L� K þ 1ð Þ
XL
t¼K

Xt exp �iwtð Þ

�����
�����
2

: ð9Þ

The indices j and k in equations (7) and (8) specify the interval
[k2�jT, (k + 1) 2�jT ] over which the periodogram is computed.
The index j also indicates the dilation scale of the wavelet yj, k(u),
so that the size of this wavelet shrinks as the periodogram interval
shrinks. (Equation (8) is equivalent to the first part of equation
(3.1) of von Sachs and Neumann [2000]. The c terms, which
simply indicate the range over which the wavelet indexed by j and
k is nonzero, have been removed for clarity.) With the choice of the
Haar wavelet for y and the Littlewood-Paley wavelet for f,
equation (8) can be simplified to

~aj;k; j0 ;k0 ¼ 2 jþj0ð Þ=2 1

p1=2

Z k0þ1ð Þ2�j0p

k02�jp
I k2�jT; kþ1=2ð Þ2�jTh i wð Þ


� I kþ1=2ð Þ2�jþ1½ �T; kþ1ð Þ2�jTh i wð Þgdw: ð10Þ

The coefficient ~aj;k; j0;k0 can then be seen as the difference in the
periodogram for two halves of the interval [k2�jT, (k + 1) 2�jT ] for
a certain frequency range [k02�j0p, (k0 + 1) 2�j0p]. If this difference
is statistically significant, the periodogram and hence the variance
of the time series is not stationary.
[13] The values that j and j0 are allowed to take on are con-

strained by the length of the time series and the need for the
coefficients derived in equation (10) to converge asymptotically to
the theoretical value in equation (7). The diadic segment length
Nj = 2�( j + 1)T for a given value of j must satisfy Nj � T1/2. This
constraint applies equally to the frequency scale in j0. Given that the
lengths of our time series of daily runoff were set at 214 values, we
therefore restricted the sum of j and j0 to be less than or equal to 6 in
our analysis. Hence when j is 0 (and single translation value k is also
0) and the periodogram is calculated for the entire time series [1, T ],
the frequency scale index j0 can take on any value from 0 to 6, and
we have finer frequency resolution. Conversely, when j0 = 0, j can
take on any value from 0 to 6, and the resulting coefficients ~aj;k;0;0

can be applicable to temporal lengths from the entire time series
( j = 0) to a segment of 256 records (�8 months long.)
[14] For testing statistical significance it is useful to define the

variance of aj,k; j0, k
0:

s2j;k; j0;k0 ¼ 2pT�1

Z 1

0

Z p

0

f 2 u;wð Þy2
j;k uð Þf2

j0;k0 wð Þdudw

þ o T�1
� 	

þ O 2�j0T�1
� �

: ð11Þ
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This quantity can be approximated by

bs2
j;k; j0 ;k0

¼ p
T

Z p

0

I21;Th i wð Þf2
j0;k0 wð Þdw: ð12Þ

It can be shown [Neumann and von Sachs, 1997; von Sachs and
Neumann, 2000] that the quantity

~a
j;k; j0 ;k0 � aj;k; j0;k0

s2j;k; j0;k0
ð13Þ

is approximately normal, so that a test of the significance of ~aj;k;j0;k0

can be defined using normal critical values. Since we are
evaluating the hypothesis jointly for each of n ~aj;k; j0;k0 , where n is
the number of valid permutations of j, k, j0, k0 (769 for j + j0 � 6),
we adjust the chosen statistical significance level a (i.e., 5%) to a
more conservative value aT = a/n. The test then rejects the
hypothesis of no variance change (which implies H0 : ~aj;k; j0;k0 ) if

~aj;k; j0;k0
�� �� > bs2j;k; j0;k0z1�aT=2; ð14Þ

where z is the standard normal critical value.

4. Analysis and Discussion

[15] With the constraint j + j0 � 6 and k = 0, . . ., 2 j � 1 and
k0 = 0, . . ., 2 j0 � 1, a total of 769 coefficients ~aj;k; j0;k0 can be derived

for each streamflow time series. Unfortunately, the fact that each
coefficient has four indices associated with it means that visual-
ization of the time-frequency relationships is not straightforward as
it is with a wavelet scalogram, in which the value of the wavelet
coefficient can be plotted with increasing color, indicating a larger
value for the coefficient. Additionally, the actual value of ~aj;k; j0;k0 is
not particularly of interest, rather the fact whether it is greater than
the test statistic or not is. For each set { j, k, j0, k0} where the values
of j, k, j0, and k0 are restricted as described above, we can simply
define a new variable cj,k which is the number of statistically
significant coefficients for a given pair ( j, k) for all possible ( j0, k0).
Similarly, we can define c0j0,k0 to be the number of statistically
significant coefficients for a given pair ( j0, k0) for all possible ( j, k).
Since these variables depend on two indices, we can plot them in
separate time and frequency plots. While the full time-frequency
information is not displayed by this graphing approach, it does
begin to point the way to some conclusions.

[16] These plots of cj,k and c0j0,k0 for the Pecos, Rapidan, and
Willamette River time series are shown in Figures 2a–2c and 3a–
3c. These rivers were chosen to represent the three groups of rivers
selected for analysis (northwest, east, and southwest). In Figures
2a–2c the y axis indicates the value of j (the scale of the time
domain wavelet). The x axis is scaled so that the diadic relationship
between different scales of j is shown; that is, for j = 0, there is
only one possible value of k (=0), so that at this level of j, the
coefficients ~a0;0;; j0;k0 are derived by using the entire time series,
while at level 1, there are two possible values of k (=0, 1), and the
coefficients ~a1;0;; j0;k0 and ~a1;1;; j0;k0 are each derived using half of the

a

Figure 3. Plots of the number of statistically significant values of ~aj;k; j0;k0 for all values of j, k (time indices) at a
given set of j0, k0 (frequency indices) for the (a) Pecos, (b) Rapidan, and (c) Willamette Rivers. The same gray scale is
used for Figures 3a–3c.
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Figure 3. (continued)
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time series and so on up the levels of j. In Figures 3a–3c the same
diadic plotting method is shown, except that for j0 and k0 we are
dividing up the spectrum from 0 to p. For example, when j0 = 0, the
single resulting significance coefficient ~aj;k;0;0 is calculated from
the entire periodogram from 0 to p, while when j0 = 1, the two
resulting coefficients ~aj;k;1;00 and ~aj;k;1;1 come from the two halves
of the spectrum [0,p/2] and [p/2,p]. The color level indicates the
number of times that ~aj;k;j0;k0 was statistically significant, indicating
the number of times a change in the periodogram was observed for
that combination of j and k (or j0 and k0).
[17] It can be seen on the time plots (Figures 2a–2c) that the

greatest number of ‘‘hits’’ generally occurs for the ( j,k) combina-
tion (0,0), which corresponds to the periodogram for the entire time
series. Only for the Rapidan River time series is this not true; for
this river, c0,0 = 16, while c2,1 = c2,3 = 17. For the frequency plot
( j0,k0) the combination (1,1) has the largest c0 value for all three
rivers shown.
[18] Although similar time and frequency plots for the other

nine rivers are not shown, the same pattern of which combinations
of ( j,k) and ( j0,k0) have the most statistically significant values of ~a
holds true. For values of ( j0,k0), all 12 rivers have the largest
number of statistically significant coefficients when ( j0 = 1, k0 = 1).
Likewise, 11 of the 12 rivers have the most significant values for
( j = 0, k = 0); the Rapidan River is the only exception to this
pattern. Figure 4 shows the number of significant coefficients for
each river at ( j = 0, k = 0) and ( j0 = 1, k0 = 1). These values are out
of 127 possible values of c0,0 and 63 possible values of c01,1.
[19] Any interpretation of the hydrologic meaning of ( j = 0,

k = 0) and ( j0 = 1, k0 = 1) having the largest number of statistically
significant coefficients in the time and frequency domains should
be made in light of several caveats. Different j and j0 values have
different numbers of possible coefficients; the effect of this is
discussed below. It should be recalled that the statistical test only
tests for a change in variance in the streamflow and provides no
information on whether the variance increased or decreased.
Finally, the following discussion only concerns the most common

variance changes. As can be seen in Figures 2 and 3, variance
changes occur at many different values of j, k and j0, k0. All this
being said, we can make some comment on the hydrologic mean-
ing behind the results just presented. The fact that most of the
rivers have the largest number of statistically significant coeffi-
cients for ( j = 0, k = 0) indicates that changes in variance are
occurring over the entire time period under consideration (1954–
1999); the variance behavior of streamflow is slowly varying. The
exception to this observation is the Rapidan, which has its largest
number of statistically significant coefficients at ( j = 2, k = 1) and
( j = 2, k = 3) (just slightly more significant coefficients than at
( j = 0, k = 0)). The variance of the streamflow on the Rapidan
changes during the second and fourth quarters (�1965–1976 and
1988–1999) of the time period considered here. Why the Rapidan
shows variance changes more localized in time can really only be
answered by consideration of other data sets, such as precipitation,
that have a causal relationship to streamflow.

[20] The predominance of ( j0 = 1, k0 = 1) indicates that the most
common type of variance change occurs to the higher wave
number components of the streamflow. Since ( j0 = 1, k0 = 1)
represents the wave number range [p/2,p], which corresponds to
structures of periods 2–4 days, a possible interpretation of this type
of variance change is that the difference between high flow and low
flow from a given storm is changing. What shows no evidence of a
change in variance is the extreme lower wave number components.
The combination ( j0, k0 = 0) is never statistically significant for any
value of j0 for any river time series. This can be interpreted as
meaning that for longer-term cycles (with periods of a season or
more), the variance of the streamflow is not changing, or in the
limit, the average level of variation of streamflow does not change
over the entire time period under consideration.

[21] This conclusion is supported by the results for ( j = 0, k = 0).
By fixing j = 0 and choosing j0 = 6, we are able to break the
spectrum up into 64 bands. Nearly all the rivers only show change
in the variance beginning at k0 = 11, which corresponds to cycles in

Figure 4. The number of statistically significant values of ~a0;0;; j0;k0 and ~aj;k;1;1 for each river. The total number of
~a0;0;; j0;k0 coefficients for each river is 127, and total number of ~aj;k;1;1 coefficients for each river is 63.
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the flow of �11 days. Only the Pecos shows any significant change
at a lower wave number, for k0 = 7, which corresponds to about a
period of 18 days. In no case is any change in the variance structure
seen for cycles in the streamflow on a seasonal or longer scale. The
ability to resolve truly low wave number behavior is limited
because we are limiting our upper value of j0 to 6. Nevertheless,
these results support the statement that while the behavior of the
streamflow on the timescale of individual storms/runoff events
may be changing, the behavior on a larger timescale (seasonally or
interannually) is not.
[22] It may be pointed out that it is not unexpected that in the

time plot the combination ( j = 0, k = 0) has the most statistically
significant coefficients since the value of j = 0 admits the most
possible combinations of j0 and k0. We can rescale each c value by
the total number of possible statistically significant coefficients for
a given combination of ( j, k) or ( j0, k0), given j + j0 � 6, so that the
resulting value for every combination of ( j, k) or ( j0, k0) is between
0 and 1. Plots of the results from this rescaling for the three rivers
presented previously are shown in Figures 5a–5c and 6a–6c. The
problem with this sort of rescaling becomes apparent when
Figures 5 and 6 are compared to Figures 2 and 3. As j or j0

becomes larger and approaches the maximum value of 6, the
maximum value of cj,k or c

0
j0,k0 for a given k or k0 becomes smaller.

Eventually, at j = 6, there is only one coefficient ~a6;k;0;0 for each
value of k. If this coefficient is statistically significant, then the
scaled value cj, k /max (cj,k) is then 1. The same is true for j0 = 6; the
only possible coefficient for any k0 is ~a0;0;6;k0 . Comparisons
between levels of these scaled results is made difficult by this

changing of scaling factor max (cj,k) as the decomposition levels
changes. That being said, a number of general observations can be
made. Even on the rescaled frequency plots, the values for the
combination ( j0 = 1, k0 = 1) remained large compared to the values
for other combinations. If the results from the levels j0 = 5 and j0 = 6
are not considered (since only 3 or 1 coefficients are present for
each ( j0, k0) combination at these levels), the value at ( j0 = 1, k0 = 1)
remains the largest for each river. In the rescaled time domain
plots, for many of the rivers, large values can be seen for some
combinations of ( j = 4, k) and ( j = 3, k).
[23] Since we have avoided the use of transformations of the

time series, we ought to address the questions of trends, which
would normally be removed by differencing. A linear or other
trend in the data causes nonstationarity in the mean. As mentioned,
previous researchers have investigated the possibility of changes in
streamflow time series by testing for the existence of trends
[Changnon and Demissie, 1996]. The existence of a linear trend
in any untransformed daily river flow time series is not easy to
discern because the peaks in daily discharge caused by storms act
as repeated outliers that pull the slope of the regression line.
Perhaps more importantly, the nature of the statistical test pre-
sented above ought to be relatively insensitive to linear trends. The
test compares the difference between the periodogram calculated
over two different intervals

I k2�jT; kþ1=2ð Þ2�jTh i !ð Þ � I kþ1=2ð Þ2�jT ; kþ1ð Þ2�jTh i wð Þ: ð15Þ

The signal over this interval can be decomposed into a linear trend
and a detrended portion of the signal. The linear trend over the first

a

Figure 5. Graphs of the ratio cj, k /max (cj, k) for the (a) Pecos, (b) Rapidan, and (c) Willamette Rivers. A value of 1
means that all possible coefficients ~aj;k;j0;k0 are statistically significant at this value of j and k.
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interval can be written by the set fn, while over the second interval
it is gn, where n is simply the number of values in the interval.
Since every gn � fn = c, a constant, the Fourier transforms of the
linear trend in each subinterval (rescaled to 0–1) will differ only in
the zeroth wave number, representing the mean of the linear trend
each interval. The variance ought not to be affected by a change in
mean since, by definition, the variance has the mean removed.
[24] To examine whether there was any trend in the data used,

the total annual flow was computed for the years 1955–1998, and
a linear regression against time was performed. A t test was then
used to determine whether the regression slope was significantly
different (at the 95% level) from a slope of 0. Three of the 12
streamflow time series (Connecticut, Rapidan, West Fork Trinity)
were found to have statistically significant trends. The presence of
these trends seems not to affect the results described above since
the coefficient results for these three rivers did not differ from the
other nine. The atypical behavior of cj,k for the Rapidan cannot be
attributed simply to the presence of this annual linear trend since
neither the Connecticut nor the West Fork Trinity showed similar
behavior.

5. Conclusions

[25] The use of a wavelet-based test for a change in the variance
of 12 streamflow time series has shown that there may have indeed
been a change in the variance of daily streamflow over the past 45
years. For all 12 rivers, a large number of statistically significant
results are found when a Haar wavelet scaled to the entire time

duration is used in the test. Use of a frequency-limited wavelet that
focused on the frequency range [p/2,p] (that is, j0 = 1, k0 = 1) also
yielded a large number of statistically significant results. Although
individual river time series show significant variance changes in
shorter time periods or smaller frequency bands, no consistent
pattern can be seen from the results of the analysis for these 12
rivers, except for the two consistent results noted above. The fact
that the most consistent results were seen using wavelets that
correspond to the entire time period or large portions of the spectral
band means that the test provides little evidence that allows us to
localize a specific date at which the variance of streamflow
changed or a specific periodic component (annual cycle, seasonal
cycle, etc.) of the time series that changed. Results for the
frequency case were largely confirmed when the number of
statistically significant coefficients was rescaled by the total
possible number of coefficients at each decomposition level.
Rescaling results for the time domain were less conclusive. The
particular test used in this study is one of several wavelet-based
tests of the variance structure of time series and was chosen
because it allowed isolation of the time-frequency ranges in the
periodogram. Other wavelet-based tests of possible changes in the
variance of streamflow time series may be able to pinpoint better
when variance changes occur [Whitcher et al., 1998] but may not
provide the same frequency-based information. Resolution of when
and at what frequencies the variance changes in each streamflow
time series is ultimately limited in this method by the need for a
long enough sample to accurately resolve the spectrum. Ideally,
longer time series would allow better resolution, but because of

a

Figure 6. Graphs of the ratio c0j0, k0/max(c0j0, k0) for the (a) Pecos, (b) Rapidan, and (c) Willamette Rivers. A value of
1 means that all possible coefficients ~aj;k; j0;k0 are statistically significant at this value of j0 and k0.
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diadic nature of the wavelet used in this test, the length of the time
series must be a power of 2. Since the time series used in this study
were 214 records long, or �45 years, the next possible time series
length would be �90 years. There are unfortunately very few daily
streamflow records that long, so the resolution of when and how
the variance changes presented in this paper may be close to the
limit possible for streamflow time series using this method.
[26] It must be kept in mind that the changes in variance results

shown here make no comment on the causes of these changes. A
change in the variance of daily streamflow could arise from
human-induced changes in the management of the rivers, changes
in the land cover of the drainage areas, or changes in the
precipitation regime in the drainage area. The fact that the rivers
chosen for this study are separated widely geographically and have
very different management and use regimes would seem to indicate
that any management-induced changes in the rivers ought to be
decorrelated. The question of how the results from one river relate
to the results from another could be potentially pursued by
incorporating information on land use changes and climatic change
over time into a larger analysis. A coupling of the statistical
analysis of streamflow time series and time series of forcing
variables such as land cover change and/or precipitation and other
climatic variables would mimic more closely the analysis done in
the forward modeling problem and would provide more complete
answers.
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